

KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny

POLITECHNIKA LUBELSKA

INSTRUKCJA DO ĆWICZENIA NR 4

PRZEDMIOT	Modelowanie w biomechanice
TEMAT	Modelowanie numeryczne układu biomechanicznego o jednym stopniu swobody.

CEL ĆWICZENIA

Celem ćwiczenia jest wykonanie modelu numerycznego układu o jednym stopniu swobody w środowisku MATLAB oraz określenie stopnia przeciążenia układu.

PODSTAWY TEORETYCZNE

Model matematyczny układu biomechanicznego o jednym stopniu swobody może zostać przedstawiony w formie równania różniczkowego:

kys.1. Model o jednym stopniu swobody układu biomechanicznego.

Przedstawione równanie opisuje model liniowy, dla którego możliwe jest wyznaczenie rozwiązania ścisłego na drodze obliczeń analitycznych. W przypadku modeli nieliniowych wyznaczenie rozwiązania analitycznego może być utrudnione lub nawet niemożliwe. Dlatego alternatywną metodą poszukiwań rozwiązań dla układów liniowych i nieliniowych są obliczenia numeryczne. W wykonywanym ćwiczeniu do utworzenia modelu numerycznego zostanie wykorzystane oprogramowanie Matlab/Simulink. W programie tym należy równanie różniczkowe przedstawić w postaci schematu blokowego. Studenci zapoznają się z podstawowymi "blokami" oraz zasadą tworzenia schematów.

Do utworzenia modelu numerycznego układu o jednym stopniu swobody zostaną wykorzystane następujące bloki:

Integrator

Cain

 \sim

Blok całkujący służący do scałkowania sygnału wejściowego. Umożliwia on wprowadzenie warunku początkowego symulacji. Znajduje się w grupie bloków "Continuous".

Sum Blok sumowania sygnałów. W opcjach istnieje możliwość zdefiniowania ilości sygnałów wejściowych oraz informacja czy sygnały muszą być dodane lub odjęte od siebie. Blok znajduje się w grupie bloków "Math Operations".

Scope

Blok oscyloskop służy do wizualizacji wybranego sygnału. Może zostać wykorzystany do zapisu przebiegów czasowych. Blok znajduje się w grupie bloków "Sinks".

1

Constant Blok stałej. W schemacie blokowym służy do wprowadzania np. obciążeń niezmiennych w czasie. Blok znajduje się w grupie bloków "Sources".

Przed przystąpieniem do utworzenia schematu blokowego równanie różniczkowe należy przekształcić do postaci, gdzie po jednej ze stron występuje tylko przyspieszenie:

> $\frac{k}{M}z - \frac{c}{M}\dot{z} + g$ (2)

W programie Matlab/Simulink łączymy w szereg bloki Integrator, które umożliwią wyliczenie z przyspieszenie sygnałów predkości i przemieszczenia. W opcjach bloku Integrator (bez 1) należy sparametryzować warunek początkowy za pomocą wprowadzenia parametru v zamiast 0.

Po lewej stronie przedstawionego łańcucha znajduje się sygnał \ddot{z} , który w schemacie musi być obliczony z równania (2). Przyspieszenie będzie liczone z sumy trzech sygnałów. W opcjach bloku Sum należy zmienić kształt bloku z round na rectangular oraz liste znaków na +--.

Następnie zamykamy schemat blokowy. W blokach *Gain* wpisujemy wzmocnienia *k/M* oraz *c/M*. Natomiast w bloku *Constant* podajemy wartość stałej *9.81*.

Tak utworzony schemat blokowy należy jeszcze uzupełnić o procedurę określenia siły w mięśniach:

W opcjach bloku **Scope** należy zmienić ustawienia, tak jak przedstawiono to poniżej. Pozwoli to na zapisanie przebiegu czasowego siły w postaci zmiennej **wynik**.

3	'Scope' parameters	
General Histo	ry Style	k
Limit data p	oints to last: 50000	
🖌 Save data to	workspace	
Variable name:	wynik	
Format:	Array	-
	OK Cancel	Help Apply

Wykonany model należy zapisać pod nazwą **model**. W zależności od wersji oprogramowania Simulink plik zapisze się z rozszerzeniem .mdl lub .slx. Utworzony model zostanie wykorzystany do obliczeń numerycznych. Natomiast do sterowania obliczeniami posłuży tzw. skrypt. W skrypcie możliwe jest

zapisywanie komend, natomiast po znaku % występują komentarze. W wykonywanym ćwiczeniu zostanie wykorzystany następujący skrypt:

EC	ITOR		PUBLISH	VIEW			#LL		3 🗄 🏑		9000) 💿 🗖
New	Open	Save Fille	G Find Files ☐ Compare Print ▼	Comment Indent	fx F₄ ▼ %	Go To V Go Find V NAVIGATE	Breakpoints	Run	Run and Time	Run and Advance	Nun Sectio	n
Untit	led.m	×										
<pre>1 - M=80; % masa czlowieka 2 - k=9600; % wspolczynnik sztywnosci 3 - c=600; % wspolczynnik tlumienia 4 - h=0.25; % wysokosc przeszkody 5 - v=sqrt(2*9.81*h); % warunek poczatkowy 6 - T=[0,2]; % definicja czasu startu i konca symulacji 7 - options=simset('AbsTol',1e-6, 'RelTol', 1e-6, 'Maxstep', 0.001); % okreslenie opcji 8 - sim('model',T, options) % uruchomienie symulacji w Simulink 9 - sila=max(wynik(:,2)) % okreslenie maksymalnej sily 10 - plot(wynik(:,1),wynik(:,2)) % wykreslenie F(t) 11 12 - saveas(gcf, 'rysunek1.tif') % zapisyjemy rysunek</pre>												
Click a	nd drag	to m	ove the docume	nt bar		S	cript				Ln 1 (Col 38

Skrypt uruchomiony za pomocą strzałki **Run** spowoduje wykonanie procedury obliczeniowej. W rezultacie w programie Matlab wyświetli się wartość maksymalnej siły oraz pojawi się nowe okno, w którym będzie widoczny wykres F(t).

Na podstawie maksymalnych wartości siły F(t) możliwe jest określenie przeciążenia, na jakie narażone są kończyny dolne po zeskoku z przeszkody o wysokości *h*. W sytuacji, kiedy człowiek stoi nieruchomo mięśnie przenoszą obciążenie wynikające jedynie z jego ciężaru *Mg.* Możemy wprowadzić współczynnik przeciążenia, który byłby zdefiniowany w postaci:

(3)

OPRACOWANIE WYNIKÓW

Po przeprowadzeniu symulacji należy zapisać w tabeli pomiarowej wartości maksymalnej siły obciążenia kończyn dolnych oraz określić wartości współczynnika przeciążenia.

	<u> </u>		
Nr próby	h (m)	F _{max,MATLAB} (N) z symulacji	γ (-)
1			
2			
3			
4			

SPRAWOZDANIE

Sprawozdanie z ćwiczenia powinno zawierać:

- 1. Tabelkę identyfikacyjną.
- 2. Cel ćwiczenia.
- 3. Schemat blokowy modelu układu w programie Matlab.
- 4. Tabelę pomiarów i wyników.
- 5. Obliczenia i wykresy *F(t)*.
- 6. Wnioski.

Uwaga.

Studenci przystępujący do odrobienia ćwiczenia laboratoryjnego powinni

Studenci przystępujący do odrobienia ćwiczenia laboratoryjnego powinni posiadać odręcznie przygotowany protokół, który musi zawierać tabelę pomiarów i wyników.